Syntheses of L-Fucopyranose and Its Homologs with Ring Heteroatoms Other than Oxygen. Stereocontrolled Conversion of a Common D-Arabinofuranoside Intermediate

Shunya TAKAHASHI and Hiroyoshi KUZUHARA*
RIKEN (The Institute of Physical and Chemical Research),
Wako, Saitama 351-01

L-Fucopyranose and a couple of L-fucosidase inhibitors, 5-deoxy-5-thio-L-fucopyranose and 1,5-dideoxy-1,5-imino-L-fucitol, were prepared from a common pentose intermediate with α -D-arabino configuration. Stereoselectivities on carbon chain elongation of the key intermediate were successfully controlled by choosing the appropriate organometallic reagents.

The widespread occurrence of L-fucopyranose (1) in many animal glycolipids and glycoproteins as well as bacterial and plant glycosides etc. suggests diverse biological functions and importance of this sugar. The L-fucose content of animal glycans is known to change under pathological conditions like cancer.¹⁾ Interests derived from these facts have prompted designing and synthesizing several L-fucosidase inhibitors.²⁾ Thus, Hashimoto et al.^{2a)} disclosed the potent inhibitory activity of 5-deoxy-5-thio-L-fucopyranose (2) by the synthetic methodology. Also, 1,5-dideoxy-1,5-imino-L-fucitol (1-deoxyfuconojirimycin) (3), one of the well-known type of inhibitors, has been prepared through many approaches.^{2b-2d)}

In this communication, we wish to describe the highly stereocontrolled synthesis of 1, 2, and 3 through a common key intermediate. The starting material employed was readily accessible methyl α -D-arabinofuranoside tribenzoate (4).³⁾ Our synthetic strategy directed towards 1, 2, and 3 included stereocontrolled elongation by one carbon unit at the C-5 position of the key intermediate, methyl 2,3-bis-O-tert-butyl dimethylsilyl- α -D-arabino-pentodialdofuranoside-(1,4) (6). Conversion of 4 into 6

was conducted as shown in the following. After removal of the benzoyl groups of 4, the resulting triol was transformed into the partially silylated derivative 5, $[\alpha]_D^{22}$ +46°,4) in such three steps as selective mono pivaloylation \rightarrow silylation \rightarrow reductive depivaloylation (53% yield from 4). The compound 5 was subjected to Swern oxidation⁵) to give the 5-ulose intermediate 6, IR v_{max} (film) cm⁻¹: 1730, in

Reagents: (A) 1) NaOMe, MeOH, 2) pivaloyl chloride (1.3 equiv.), pyridine, 3) TBDMSCl, imidazole, DMF, 4) LiAlH₄, ether (53% from 4); (B) oxalyl chloride, DMSO, CH₂Cl₂, -70 °C and then Et₃N; (C) Me₂CuLi, ether, -78 °C (70% from 5); (D) Me₃Al, hexane, -78 °C (70% from 5); (E) Ac₂O, AcOH, conc. H₂SO₄ (15:15:1) (quant.); (F) NaOMe, MeOH; (G) 1) p-TsCl, pyridine, 2) KSAc, HMPA, 85 °C (74% from 8); (H) 1) MsCl, pyridine, 2) NaN₃, DMSO, 80 °C (84% from 8); (I) 1) NaOMe, MeOH, 2) 10% Pd-C, MeOH (81% from 12).

quantitative yield, which was used for the next step without thorough purification.

As we expected to introduce heteroatoms other than oxygen by S_N2 displacement of the 5-sulfonyloxy group of a 6-deoxy-hexose precursor, we needed both diastereomers of 6-deoxy-5-hydroxyl hexose derivatives like 7 and 8 with reversed configurations at C-5 for preparations directed towards 1 and 2, 3. Attainment of efficient diastereofacial selective addition of a methyl unit to carbonyl group of 6 was the most tough problem to be solved. Taking the presence of many oxygenated functionalities in the substrate into account, we searched suitable methyl organometallic reagents for conversion of 6 into 7 or 8. As shown in Table 1, the ratio of produced 7 and 8 varied in wide range depending on the kind of the reagent employed, whereas chemical yields were in narrow range in all entries and moderately good. Reaction of 6 with Me₂CuLi in ether⁶) gave 7, [α]_D²² +47°; ¹H-NMR (500 MHz, CDCl₃) δ: 1.27 (3H, d, J=6.7 Hz, Me), 4.71 (1H, brs, C-1), in high diastereofacial selectivity, while use of Me₃Al in hexane⁷) resulted in predominant production of the diastereomer 8, $[\alpha]_D^{22}$ +29°; ¹H-NMR δ : 1.21 (3H, d, J= 6.7 Hz, Me), 4.73 (1H, brs, C-1). These isomers (7 and 8) could be separated by silica-gel column chromatography, and their configurations were later confirmed by conversion into the known compounds (1-3) (vide infra). Although explanation about the marked difference of the diastereofacial selectivities between Me₂CuLi and Me₃Al might be interesting, the highly oxygenated functionality and the presence of the bulky protecting groups in the substrate interfered simple rationalization of the mechanism. Very recently, Hashimoto et al.⁸) also reported a stereoseletive addition using Me₃Al in a similar system.

After achievement of the efficient syntheses of 7 and 8, these diastereomers were further converted into 1 and 2, 3, respectively. For preparation of 1, compound

Table 1. Diastereomeric Ratios from the Reaction of Aldehyde 6 with

Methyl Nucleophiles

Entry Reagent Solvent Temp/°C Ratio (7/8)a) Yield/%

Entry	Reagent	Solvent	Temp/°C	Ratio (7/8) ^{a)}	Yield/%
1	MeMgBr	THF	0	62 / 38	84
2	MeMgI	ether	-20	71 / 29	76
3	Me ₂ CuLi	ether	-78	92 / 8	70
4	(i-PrO)3TiMe	ether	-42	47 / 53	50
5	MeLi	hexane	-78	33 / 67	66
6	MeCeCl ₂	THF	-78	25 / 75	88
7	MeLi	ether	-110	24 / 76	76
8	Me3Al	hexane	-78	4 / 96	70

a) Ratios were determined by 500 MHz NMR.

7 was subjected to acetolysis (Ac₂O - AcOH - conc. H₂SO₄ (15:15:1), 0 °C - rt) to give tetraacetate 9, IR $v_{max}(film)$ cm⁻¹: 1750, in almost quantitative yield. Finally, 9 was de-O-acetylated with NaOMe in MeOH to give L-fucose (1), $[\alpha]_D^{21}$ -73° (H₂O, equilibrium), which was identical with an authentic sample (Fluka AG, Buchs), $[\alpha]_D^{21}$ -74° (H₂O, equilibrium), except the anomeric ratios. On the other hand, for synthesis of 2, compound 8 was reacted with p-TsCl in pyridine to give the 5-tosylate, which was treated with potassium thioacetate in HMPA at 85 °C, giving thioacetate 10, $[\alpha]_D^{25} + 27^\circ$; ¹H-NMR δ : 2.33 (SAc), in 73% yield from 8. Thioacetate 10 was subjected to acetolysis to provide tetraacetate 11, IR $v_{max}(film)$ cm⁻¹: 1740, 1696, in almost quantitative yield. The acetyl group of 11 was removed with base to give 5-deoxy-5thio-L-fucose (2), mp 152 °C; $[\alpha]_D^{22}$ -227° (H₂O, equilibrium), (lit^{2a}): mp 160 °C, $[\alpha]_D^{25}$ -230° (H₂O, equilibrium)). In a similar way, 8 was reacted with MsCl in pyridine to convert into the 5-mesylate, which was reacted with NaN3 in DMSO at 80 °C to afford the azido derivative 12, $[\alpha]_D^{25}$ +85°; IR $\nu_{max}(film)$ cm⁻¹: 2111, in 84% yield from 8. Acetolysis of 12 resulted in triacetate 13, IR $v_{max}(film)$ cm⁻¹: 2116, 1750. After removal of all acetyl groups of 13 with base, the resulting compound was hydrogenated over 10% Pd-C under H₂ atmosphere to give 1,5-dideoxy-1,5-imino-Lfucitol (3), $[\alpha]_D^{25}$ -48° (H₂O), (lit: $[\alpha]_D^{20}$ -49°, 2b) -47° 2c) (H₂O)).

In conclusion, combination of the well-protected pentodialdofuranoside derivative 6 and suitable organometallic reagents resulted in efficient selective formation of two diastereoisomers with L-galacto and D-altro configurations. These selectivities will also be of wide applicability besides the preparation of 1, 2, and 3.

References

- 1) H. M. Flowers, Adv. Carbohydr. Chem. Biochem., 39, 279 (1981).
- a) H. Hashimoto, T. Fujimori, and H. Yuasa, J. Carbohydr. Chem., 9, 683 (1990); b) G. W. J. Fleet, A. N. Shaw, S. V. Evans, and L. E. Fellows, J. Chem. Soc., Chem. Commun., 1985, 841; G. W. J. Fleet, N. G. Ramsden, R. A. Dwek, T. W. Rademacher, L. E. Fellows, R. J. Nash, D. St. C. Green, and B. Winchester, J. Chem. Soc., Chem. Commun., 1988, 483; c) H. Paulsen and M. Matzke, Liebigs Ann. Chem., 1988, 1121; d) G. W. J. Fleet, S. Petursson, A. L. Campbell, R. A. Mueller, J. R. Behling, K. A. Babiak, J. S. Ng, and M. G. Scaros, J. Chem. Soc., Perkin Trans. 1, 1989, 665.
- 3) R. K. Ness and H. G. Fletcher, Jr., J. Am. Chem. Soc., 80, 2007 (1958).
- 4) All new compounds gave satisfactory spectral data and elemental analyses. Values of $[\alpha]_D$ were measured for CHCl₃ solutions (c 1.0) unless otherwise specified.
- 5) K. Omura and D. Swern, Tetrahedron, 34, 1651 (1978).
- 6) W. C. Still and J. A. Schneider, Tetrahedron Lett., 1980, 1035.
- 7) E. C. Ashby, S. H. Yu, and P. V. Roling, J. Org. Chem., 37, 1918 (1972).
- 8) H. Hashimoto and M. Izumi, 61st National Meeting of the Chemical Society of Japan, Yokohama, April 1991, Abstr. No. II, 1C105, p. 1258.

(Received September 30, 1991)